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A.  C1assic:al Functims 
1. General 

I n  the  s t d g  of atmic collisions under t h e  influence of a short-range ' 
spherical ly  symmetric 2oten t ia l  V(r), the phase s h i f t  ?lays a fundamental role. 

noth classical and quantal e f fec ts  can be t rea ted  from this standgoint. 

s h i f t  i s  in t imate i j  related t o  the col l is ion lifetime, the cross section, and the 

deflect ion function. 

The phase 

. 

The phase s h i f t  is equivalent c lass ica l ly  t o  a function A that has the 

alternative fonnar 

0 E - V(r) 

Here the p f s  are radial momenta, 
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and the tiirn-ing points r b, and b ( 3 )  are defined by 
0' 1 

'Ihe connection between the Eqs. (la) to (Id) depends on the evaluation of the 

in tegra l  

and its replacement by a function with the same limiting behavior, 

31 X 

The f inal  connection with Eq. (Id)  comes about because 
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b 

t' 

The first form of E q ,  (1) is *e fmailiar one. The second 8hows how the 

phase shift is canposed of the  dlfference between two simple action integrale,  

one over the radial motion on the actual trajectory and the other cver the r ad ia l  

motion on a canparison t r a J e c t o r y r i t h  vanishing interaction. In the th i rd  form 

the comparison t ra jectory is taken as force-free inside R, but with the constant 

potent ia l  V'(r - < R) - V(R). 

s h i f t  from different  regions of the trajectory,  displaflng expl ic i t ly  the 

dV ; this form has the computational advantage dependence on the rad ia l  force - 
of converging rapidly at  large r if the interaction is of short  range. 

- 

The l a s t  fom show the contribution t o  the  phase 

IF 

The c lass ica l  deflection function is w e l l  knm t o  be a derivative of L-: 

1 
The las t  form is equivalent to one that has been used by F'irsov 

of the inverse problem, the deduction of the potent ia l  frola the c lass ica l  

deflection. 

should be useful f o r  canputation. 

i n  the study 

Since it converges more rapidly than the First form a t  large r, it 
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The c lass ica l  co l l i s ion  lifetime is a l so  a derivative of A : 

The last form is the  preferable one for computation because of its rapid 

convergence. It a lso  displaya conveniently the analyt ical  behavior of Q near 

the orbit ing s ingular i ty  and elsgwhere, 

The c lass ica l  phase c \ (L,E)  is  frequently computed because of its 

importance f o r  semiclassical scattering2, which involves quantized angular 

m o m e n t u n  but ignores quantization of the rad ia l  motion. The semiclassical 

phase s h i f t  follows frm the ident i f icat ions 

d (k., E)  is j u s t  t he  asymptotic phase shift of the first order WKB approximate 

wave function. 

suf f ic ien t ly  small in te rva ls  of E it is possible to  d i f fe ren t ia te  it nmer i ca l ly  

0 

I n  cer ta in  cases where go($, E) has been tabulated for 
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:hen the  potential  contains a w e l l  a t  small r, the  classical  action integral  

f o r  notion inside the w e l l  can always be defir'ed: 

t where r < r 

the  two foms is established hy the fact, t h a t  t h e  functicn i? of h-s. (5) and ( 6 )  

are  the turning iloints, Wit:-' 3(r1) = p(r2) = 0; the connection between 
I 

2 3. 

vanishes a t  t h e  turnjng po in ts  r 

a t  m s i t i v e  energics behind a bar r ie r  (metnstably tcund motion) as t c  ..,otion i n  a 

and r The func t im  d a;ipljes as well t o  :(lotion 
2 1' 

potential  w e l l  

appears i n  the  

a t  n e g a t i ~ e  energies ( t ru ly  bound motion) . 
semiclassical ap?roximaticn f o r  the bound states i n  t h e  condition 

The functicn A( L,3) 

which gives the lowest order ap?rcximation t o  E when n i s  an intecer. a(L,E)  
n ,L 

can obviously be looked on as a fimction measuring the cayacity of the w e l l ,  since it 

counts the  number of kound states tha t  can be accanmodated With energies less than E. 

The classical lifetime inside the  well i s  given by t h e  equivalent forms 

This obviously is just t h e  time taken for one coxxplete cycle of motion i n  the  

w e l l .  The t o t a l  c lass ical  lifetime, 

c l  c l  
.JC1 (E,L)  = 4 + ; d  - - -  

t o t  cell I ound, 

. t I h a l l  use the convention of indexing the  turning points odd when the r ad ia l  
force i s  positive, and even when it is negative, w i t h  the  indices increasing a s  
r decreases. 

(13) 
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* 

is  more than 3cst a form1 construct -- it  is  t h e  n a t i r a l  ex?ression t o  use i n  

discussi2g t h e  tbexmodynariic properties of t h e  gas. 

for dirier c lus te rs  is  conveniently expressed 

The internal  par t i t i cn  func t im 
3 i n  a forn whose classical  l i m i t  is 

2 2  
= h- (?,,L) dlid(L / K  ). 

, in t  
.A 

c l  tot 

Closeljr re la ted t o  the classical action integrals  is the  integra3 

which neasures the imaginary action for motion i n  the classically forhidden region 

under a barrier. 

quantal barr ier  leakage. 

This integral  a.spears i n  the  lowest order approximation f o r  the 
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2. Cirbiting 

;henever the effect ive ?otent ia l ,  

h a s  a smcoth m a x h m ,  classical orbiting w i l l  occur a t  energies near t h e  energy 

E of the ~iaximu?. The c l a s s i ca l  col l is ion lifetime has a l o p r i t h q i c  sinfi.ularity 

as E 3  Em f r r m  below aqd above, and the c lass ica l  ph,ae A sEffers a discontinuous 

s tep by t he  mount 2.(L,Z0) given by Yo,. (In). 

have given a valuable analysis of  these discont inui t ies  a t  orbit ing,  and have shown 

m 

4 Pmd, I I i l l ,  LJskano and "heeler 

that tkey are a r t i f a c t s  of t h e  classical  a:>proximation which disamear when quantum 

mechanics i s  applied. In  t h i s  they a r e  reriiniscent of t h e  classical i n f i n i t y  i n  

the t c t a l  scattering cross sec t im ,  which only disappears i n  quantum nechanics (see 
5 eswcially the recent work of ?auly ). 

Orbiting col'iislons are expected to play an impartant role i n  the $body 

study recanbination of reactive atam. 

are already 

Several clarrsical treataents of such eventm 

The most important 8tates contrlbuthg in ma& tbe"ie8 

are presumably the long-lived C O l l i d O M  a t  energies close t o  orbiting. This b 

just the region where the quantal correctlm to the cLpLMica3 5ntt.uit.y nust caw 

a. ParabolicBuTiar 

The slmple(rt potential that exhibits the orbiting phenaaemon is  the quadratic, -- ~- - - - .  .- - 
2 

(17)  a 
m I  vo = E - (x - x,' . 



rJhile t k i s  potential  cannot be va1i.d over the wyole range of r, it is almost always 

a rood approxination within some distance d of t h e  naxin:un. !hen the enerry E 

of t h e  motion 

t ie  contribut 

x < x < x  + m -  - m 

where 

is  close t o  Eo, 

E = Eo +e, 
on t o  the c lass ica l  l i f e t i n e  from t h e  moti n i n  the region 

d can be  computed. It is  

and the  sign (+) - is taken i n  the  same sense as  the sign of E .  
Eq. (19) can be eeanded t o  give 

’dhen is small 

c l  
This expression exhibits t h e  loparithnic singularity of 4 as 0. dhen Eq. 

(19) or (21) i s  applied i n  the rad ia l  orbiting problm, the  expression for  

do (d) must be doubled when E > u,  i n  order t o  take y o p e r  account of the notion 

i n  the  full region x - d .c x < x + d, 

c l  

m - -  m 
B, Attract ive  Power Law 

I-ore r e a l i s t i c  fo r  the atonic coll ision problem is the  pure r ad ia l  a t t rac t ive  

potentials 
-n vl(n) = -an r (n 2). 
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This  :xst of course be coupled w i t h  the  c e n t r i f u g a l  term , 

2 2 u = L/2pr  , 

t o  sbow t he  o r k i t i n p  maxinun. 

in a form that scales convenientv, 

The r e s u l t i n g  effective v.-tential  can be w r i t t e n  

;.;here 

"he t iaximw- occurs a t  

4/n-2 
and 1/1"( em) = -2(n-2)(2/n) 

The inflection ?o in t  occurs a t  

From bq. (26) w e  see tha t  t h e  quadrztic a:)prcximation t o  t h e  :*.aX~lwliy Eq. (171, 

is  character ized t:y t h e  constants  
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and 

The d i s t ance  d i n  Lqs. (19) t o  (21) should obviously l e  taken sonewhat less than 

t h e  d i s t ance  d front t h e  i n f l e c t i o n  ;)oint t o  t h e  T i z i m u n ,  i n f  

From t h e  p o t e n t i a l  x ( n )  we can also determine t h e  f o m  of t h e  c o l l i s i o n  

lifetime i n  t h e  l ow energy l i m i t  a t  f i n i t e  L. 

po in t  e the  princi!ial parameter, one can def ine  

ijsing Eq. (ud) and r,aking the tu rn ing  

0 

so  t h a t  
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P.e l a s t  form represents a n  expansion of the i n t e r r a 1  i n  powers of r, v r 1 2 d  a t  

sr.inll  E o r  s m a l l  ... Invertinr : ~ 1 ~  (30,) xe f ind  

f) 6-6 ; p / 2  .... -_ - - 
0 

0 0 . .  3 
(" -1) + c =e 

so  that converl;ence is assured i f  n - > 3. 

e q a n s i o n  i n  ?oilers o f f .  

5;. (31) can t hen  be rearranced 3s an 

The leading ten t  r ives  

:%e inteyrnls  I ( 2 )  can be evaluated easily: 
0 

C .  L e n n a r d J O X l 8 8  PO*tsa 

Far this case the potential V2(r) is usually enspressed in teflps of the w e l l  

depth and the turning point ro at E = L = 0: 
0 

To discus8 the orbitlngmaxlmmu it is poasible to write the equatd.on in a reduced 

form similar to that of the preceding 8ectl.on: 

-6 
?f 2 = A(V2 +U ) =&-12 - Q + g2, 



where 

However, we shall use instead the dimensionle8s form 

-12 v2 u2/46 * 8 - S4 + r e o 2 ,  

with 

8 = r/ro = rge/ro, X- L 2 /8p5(r0)*. 
0 0 0 

The maximum of v occurs at I where 2 2m' 

and the value of v2 a t  the maxiram i8 

(38) 

( 3 9 )  

The second derivative at the is 

8r2 
-14 -(1- (Y/3IY2 ...)* (42) + 120 sa -8 

a 3 
V2"(m) - -24 8 

The maxhm merges w i t h  the minhm behind the barrier at the critical values 

By camparison with the simpler function 



f o r  which 

it is seen that the short-range repulsion moves the maximum t o  smaller r and 

raises it slightly. However, the deviation from the behavior of the camparison 

function vl is not great  until quite close to  the c r i t i c a l  values 7 8 , For 

most purposes connected w i t h  orbit ing a t  energies and angular momenta below the 

c r i t i c a l  values it is therefore quite valid to neglect the repulsive pa r t  of the 

potent ia l ,  a t  least far a semiquantitative survey of t h e  behavior. 

noting tha t  the c r i t i c a l  energy fo r  the Lennard-Jones potent ia l  is 4 5  of the 

dissociation energy, 

t t  

It is worth 

B. Quantal Collisions 

1. Semiquantitative Survey. 

a. General 

The scat ter ing m a t r i x 2  provides the most f a m i l i a r  general forniulation of 

quantal co l l i s ion  problems. I n  many cases, a t  least over a res t r ic ted  energg range, 

it suff ices  t o  consider single channels separately and the corLputation reduces to 

the determination of phase s h i f t s  &(E), 

21 
S&* = 

The l i fe t ime matrix is re lated t o  S by the 

uith tbe relationship 

matrix equation 



I n  the single channel case this reduces to  

Both the scattering and lifetine matrices can be applied to many-body collisions.  

The lifetime matrix can be defined even i n  the energy region where only 

bound s t a t e s  exist. A typical  diagonal element Q&(E) there shows a spectrum of 

narrow reson~~1cets t h a t  may be represented as 6 -functions or aa p d a ~  centered a t  

Ei w i t h  a finite half-width r determined by the radiat ive traxmition probabilitiecr 

(or other interactions).  Near Ei, then, 
i 

The probabili ty of observing the specific energy E, if  it is bown that the sptem~ 

is the S t a b  i, i8 

and the integral over the resonance region gives 

It is now possible t o  inver t  Eq. (48) and define the phase s h i f t  unambiguously 



. 

even for the bound region of the spectrum: 

The phase shif t  i n  the bound region 

T ' a t  each bound leve l  Et; 

widths 

has, by v i r tue  of Eq. (by), a step of magnitude 

these steps are rounded i n  accordance with the respective 

The phase s h i f t  a t  zero energy then autanatically s a t i s f i e s  Levinsonls theorem, 

where N represents the number of bound states. More generally, B 

where nR(5) is the number of bound states w i t h  energies below E (E - > 0). These 

equations are valid for states of any angular momentum. 

For more complicated sptesos where >simple phase shifts may be hard t o  define, 

E q .  (47) can be inverted t o  define the S-matrix through an integral  equation: 

By this equation the phases o f z a r e  uniquely defined i n  a way that should sa t i s fy  

a generalized Levinsonls theorern. 



c. Barriers and Semi-bound States. 

Equations (52) and (56) are of course val id  a t  any energy, not merely i n  

the bound region. 

region behind a potential  barrier (most commonly of centrifugal origin) in a 

L e t  us now look i n  particular a t  t h e  e f f ec t  of the semi-bound 

scat ter ing problem, 

bound, and it is very nearly so for  heavy masses and thick bar r ie rs  i n  quantum 

I n  the c lass ica l  limit, motion i n  this region becomes fu l ly  

mechanics. A character is t ic  dimensionless parameter, for a potential  of standard 

shape, can be written i n  terms of the energy minimum -5 and the  turning point ro 

a t  E = 0, L = 0: 

0 

The classical l i m i t  is approached as cs+ 0. 

E is far enough belw the top of the barrier a t  Em, the system is i n  the saniclassical 

region where the semi-bound states can be t reated very well  by the f i rs t -order  

WKB approximation. 

As long as  -?$ is mall and the energy 

The region near the top of the  barrier requires separate 

attention, and w i l l  be discussed i n  t h e  n e x t  section. 

I n  the semiclassical region, where bar r ie r  penetration is mall, the semi- 

bound states are characterized principally by their energy level,  E and their 
?.I J,n 

width J:: . I n  the simplest form of the WKB approximation, the energy leve ls  of 
A- ,n 

both bound and semi-bound states are  determined by Eq, (11); the dependence on 

the parameter k is shown by rewriting this i n  terms of reduced quantities: 
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The average density of energy levels near E is then given approximately by 

(This is a special  case of a general re la t ion between the density o ,evela a m  

( 5 9 )  

the 

lifetime.) !€be shape of the resonance level is st i l l  given apprmbnately by Eq, 
n 

(49) but  the leve l  widths f - are nou determined not only by radiative processes 
3 ,n 

but also by the tranwiiasion of the barrier. The quantal lifetime spectrum can be 

subdivided approximately in to  an internal  pa r t  anbodying these resonancest 

and on external p a r t  I& that is given i n  first approximation by the c l a s s i ca l  

represents essent ia l ly  formula qC1 of Q. (6). me classical lifetime 

the  average behavior of t h e  function Qint of Eq. (60). The t r u e  quantum lifetine 

function cannot s t r i c t l y  be divided in to  external a* inter& parts, bu t  i n  t h e  

semiclassical region It can be approximated ve rywe l l  by the  sum of these two: 

Bound c o n  

The behavior of the phase r h i f t  can now be examined by extending Eq. (52) 

i n t o  the semiclassical region, The phase s h i f t  here continues t o  shuu a s l i g h t l y  

rounded step of magnitude 77 every time a resonance level is passed, which we can 

a t t r i b u t e  t o  the internal contribution t o  t h e  phase s h i f t ;  

6 int(E) 2; +=tan”( 1” /2(E - E)). 
1 n 1 p n  A n  
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. . .  

This s tep  function is now superimposed OR a gradually sh i f t i ng  background deXt(E) 

due t o  the external p a r t  of the potential which ie approximately given by t h e  

function 6 ( 2 ,  E) of Eq. (9). 

is represented by the function A(L,E) of Eq. (10). 

,c 

The average behavior of the internal s tep  function 
0 

The leve l  widths i n  the semiclassical region are affected by the possibility 

of penetration through the barrier as well as by radiat ive and other interactiona. 

I s h a l l  consider heme only the barr ier  penetration contribution, which  f o r  s implici ty  
1- 

of notation will be denoted j u s t  i ,  . The reciprocal of the average lifetime 
A ,n 

of the l eve l  (.i, n) depend8 on the product of the frequency of col l i s ion  with the 

barrier, approximately I./\ (E n ) ,  and the ba r r i e r  transition probability, 

e-ich is exp(-B(i,E)/+€i),  according t o  t h e  simple WKB result, with B given by 

cl 
ound n,i 

Eq, (15). The dependence on the parameter is shown if  we w r i t s  

til Then the  average lifetime of the .. level is given by 

or 

h.m these expressions we can derive an estimate of the average rate of 

penetration through the potent ia l  bar r ie r  i n  an energy range A E  embracing several 

resonance levels. I n  the time A t and the range AE the number of bar r ie r  

passage events A N  is proportional t o  the density of available levels multiplied 

by the reciprocal of the  average lifetime, with an additional factor of 3 f o r  

18 



passage i n  one direct ion only. me resul t ,  from Eqs. ( 5 9 )  and is 

I n  the approach t o  the classical  l i m i t  the density of energy levels  increases 
,--1 

l inea r ly  w i t h &  , uhi le  the l eve l  widths r and the rate of barrier passage decrease 

exponentially with kc'. 
i 

Thus the barrier rapidly becomes impenetrable. More 

interest ing is the f a c t  that the levels became exponentially more and more isolated 

from each other even as they aLjproach the c lass ica l  infinite density. 

spectrum is  therefore not a simple continuum, but rather an infinitesimal fine-toothed 

The c l a s s i ca l  

comb, 

passage t o  the l M t i 9 0 ,  but they require an averaging as w e l l .  

The usual continuous classical  expressions are not the result of a simple 

The pathological nature of the c lass ica l  spectrum, with infinite i--function 

discontinuities at every point, I s ,  naturally, only imperfectly represented by 

the classical expressions Q (L,E) and A(L,E). Similarly, when tis  small but c l  

finite, it is hopeless to t ry  to represent t h e  behavior of the resonances by using 

the WKB expansion of the IhaSe s h i f t  or the lifetime i n  powers of R beginning w i t h  

the c l a s s i ca l  term. One m u s t  expect such an expansion t o  m i s s  the resonances 

completely, 

continuow spectrum at t r ibu tab le  t o  the external par t s  QQt o r  .&& that depend mainly 

That expansion may nevertheless be useful i n  improving the background 

on the potent ia l  near the outer turning point. 

By wing refinements of the WKB method which do not necessarily depend on a 

simple expansion i n R ,  it is of course possible t o  improve on the estimates of the 

energy leve l  position8 and widths given here. Sane at tent ion w i l l  be given t o  

such improvements later i n  this paper. 
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d. 

Close t o  the maximum, it is  natural t o  apprcximate the  barrier by a parabola. 

U n t a l  effects i n  such a region have been frequently studied, perhaps most careful ly  

by Ford, H i l l ,  Wakano and Wheeler? The characteristic c i rcu lar  frequency w 

playa a fundamental. r o l e  i n  the theory -- it is just the f’retquency that would be 

associated with the h m o n i c  osc i l la tor  i f  the parabola were inverted. 

notation of Eq. (17), 5;  is  defined by 

Behavior Near a B a r r i e r  %ximum 

0 

I n  the 

For atanic  collisions w e  can use the potential  x- 

by Eqs. (39) and (57) 

of Eq. (b), with 2’and ,i/ given 1 
and a dimensionless quantity containing LC) 

0 

where we can also express T i n  the form 

The quantity$ cd is a natural measure of the energy range near t he  barrier 

m a x i m u m  i n  which quantal effects m u s t  daminate; comparing t h i s  with the  height of 
0 

the maximuv w e  g e t  the r a t i o  

This c r i te r ion ,  independent of mass, shows tha t  barrier maximWr 

important throughout the whole of the barrier for values of t he  

e f fec ts  may be 

angular momentum 

20 
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quantum nmber less than about 6 -- b u t t h e  bar r ie r  is far fran parabolic i n  most 

of this region, so a more refined theory is cal led for. 

A re lated c r i te r ion  can be used to estimate the importance o f t h e  region of 

quantal behavior as it depends on the reduced mass and other parameters o f  the 

system, 

of E/& versus x $  we obtain, Eq. (bs ) ,  the  curve 

2 If we p lo t  the locus of the maximum in a diagram of energy versus L , or 

The region of strong quantal behavior can be sham bracketing this curve a t  a 

distance 

fl E/4& = zh W b € =  0 +(2/3'$)'. (72) 

The tamperatare can be s h m  on the same diagram aa a horicontal l i n e  kT/4 & . 
Finally a limit in y can be introduced beyond whioh the interact ion can be ignored. 

The r e l a t i v e  importance of the quantal behavior can then be estimated f h n  the 

r e l a t ive  areas of the quantal and c lass ica l  par t s  of the diagram (by plotting L 

or y , the mult ipl ic i ty  associated w i t h  L is properly taken into account). By 

using the new reduced quantit ies 

2 

w e  a r r ive  a t  a single  reduced diagram, 
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We can now canpare the areas 

and 

forming the r a t i o  
-I/ 3 = 2.3 3 d j (  E / ~ C T ) ~ ~ .  R = Iqu/Itot = UT (74) 

Since the areas are proportional t o  volumes i n  phase space, the ratio R i t3 P 

sa t i s fac tory  measure of the importance of the quantal region a t  the tempera- 

T. In Table I this procedure is applied t o  some representative C a 8 e a .  

The character is t ic  f’requency ci) plays an important role i n  the quantum e f fec t  
0 

t h a t  damps out the logarithmic singularity i n  the c l a s s i ca l  lifetime spectrum at 

t h e  orbit ing energy. 

t o  show t h a t  the maximum of the classical  curve must be limited t o  about wo 

( the quantal reeonances superposed on this curve are mch higher, bu t  narrow i n  

proportion). 

H i l l ,  W h o  and Wheeler!’ Taking x = (e - Ern)/ A a;, their formula for the external 

p a r t  of the phase s h i f t  (which anits the contribution of the resonances) leads to 

the r e s u l t  for Q& when z irr mall: 

It is  possible to use simple uncertainty principle arguments 
-1 

These results are substantiated by the more detailed theory of Ford, 

where r= 1.7ijl.l is Eulerrs constant; t h i s  gives the quantal l b i t a t i o n  on the 

c lass ica l  orbit ing singularity: 
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Their theory also describes the important phenomena associated with the modification 

of the quantal resonances new the barr ier  mximun. However, they do not exp l i c i t l y  

discuss the related effect of vir tual  levels immediately above the c lass ica l  

maximun. 

continue t o  play a r o l e  r igh t  up t o  the maximmn, but are much broadened and dis tor ted 

i n  shape. 

Qualitatively, their theory shows t ha t  the resonances behind the barrier 

-B/h 
The barrier penetration probability deviates f r o m  the simple form e ¶ 

becaning 

(eBfi + 1)O1, (77) 

a r e s u l t  that is exact far a parabolic har r ie r  and probably a good approximation 

even where the shape diverges frm the  parabola. 

and extend t h e i r  treatment, applying the theory i n  sams d e t a i l  to acme atcznlc 

co l l i s ion  cases. 

approximate theory with icmm illuminating exact computation8. 

In what fol laus  we &all  review 

I n  the  case of H + H col l is ions we shall be able t o  compare the 

Part icular ly  i n  case8 where , I -  i s  mall, it appears f ’ r au  Eq. (71) that the 

daualn of 

parabolic 

extend as 

strong quantal behavior extends over a much wider energy range than t h e  

appr-ation is valid. 

far as the inf lect ion point, and we have by Eq. (27), 

I n  f ac t ,  the parabolic approximation cannot 

3 
1 - E  /E - 1 - 7  (3) 7 - 0.158. 

infl = 

By canparison with Eq. (71) , we see that quite large values of A are required 

before the quantal regicn is safely confined to the parabolic region. 

c r i te r ion  is 

The 
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Lc 
Wthermore, the treatment of wheeler et al: is accomplished by matching the solution 

appropriate t o  the parabola inmediately t o  a WKB solution a t  sane intermediate 

distance. This implies t ha t  the WKB solution must be valid t o  a radius a t  least 

as small a8 the in f lec t ion  point. However, th i8  can be tes ted by using the 

c r i t e r ion  given by Sch i f f ,  that 
7 

if the wI(B solution I s  t o  be valid. I n  the special ca88 E = E-, r - r- th ia  

reduces to 

This again requires very large values o f R  for validity, 

Fortunately, it i a  possible t o  develop a quantitative method of apprdnia t ion  

va l id  for small values of 1 and energies near the bar r ie r  maximum by using the 

technique of M i l l e r  and Good.’ Their results show that E q .  (77) is valid even 

where the potent ia l  is no longer parabolic. 

M i l l e r  and Good88 method t o  extend the r e s u l t s  of Wheeler et al. 

proves va l id  f o r  H + H collisions, and can e a s i l y  be applied t o  heavier atans f o r  

which it must be even more reliable, 

I n  t h e  next section we s h a l l  apply 

This method ”-. 

I n  Table1 we give sane numerical estimates of the importance of orbit ing 

quantal effects f o r  sane diatanic col l is ions chosen throughout the periodic table. 

These are necessarily imprecise, principally for  the reason t h a t  the strength of 
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t h e  long range a t t rac t ion  which controls the orbiting behavior is not experimentally 

known. 

and equilibrium distances with the Lennard-Jones equation. 

quantities 

@o(n = 1 )  which l imi t s  the magnitude of the c lass ica l  maximum i n  the lifetime a t  

orbiting. 

equation 

Accordingly we have used the experimentally known dissociation energies 

Besides the diniensionless 

of Eq. (57) and R2930 of ~ q .  (74), w e  give the reciprocal of the frequency 

The corresponding limit for  other values of ,f can be obtained fran the 

From Eq. (70) we get  also 

It a9pears inTabLe I tha t  the s t a t i s t i c a l  c r i t e r ion  R, measuring the hportance 

of t he  quantal orbit ing region of phase space, falls  off much more slowly than A. 
Quantal ef fec ts  may thus he of importance i n  transport properties and three-hody 

reactions of atcans, a t  least throughout the first  row elements including the 

ataospheric gases 0 and N. 
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